Web Application Security Assessment — OWASP Top 10
Scope & Methodology

The assessment simulates a black-box security test of intentionally vulnerable web applications
(PortSwigger Web Security Academy and OWASP Juice Shop). Manual testing techniques
aligned with the OWASP Top 10 were used to identify common, high-impact web application
security risks and evaluate their potential business impact.

Executive Summary

A web application security assessment was performed to identify vulnerabilities aligned with the
OWASP Top 10. Several high-risk issues were identified, including SQL Injection, Broken
Access Control (IDOR), and Cross-Site Scripting (XSS). Successful exploitation of these
vulnerabilities could allow attackers to bypass authentication, access or manipulate sensitive
user data, and execute malicious scripts in user browsers. Addressing these issues will
significantly reduce the application’s attack surface and overall security risk.

Finding 1 — SQL Injection (High Risk)

OWASP Category: A03:2021 — Injection
Severity: High (Direct database compromise possible)

Description

SQL Injection occurs when untrusted user input is incorporated into database queries without
proper handling. This allows attackers to manipulate query logic and interact directly with the
backend database in unintended ways.

Affected Functionality

User authentication (login)

Product search and filtering features
Impact
An attacker could:

Bypass authentication controls



Access or modify sensitive application data
Extract user credentials

Compromise the entire database

Disrupt data integrity and confidentiality

Root Cause

Use of dynamic SQL queries with user-controlled input
Absence of parameterized queries or prepared statements
Insufficient server-side input validation

Over-privileged database accounts

Recommendation

Use parameterized queries or prepared statements for all database access
Validate and sanitize input on the server side

Avoid constructing SQL queries using raw user input

Enforce least-privilege permissions for database users

Implement logging and monitoring for abnormal query behavior

Finding 2 — Broken Access Control (IDOR) (High Risk)

OWASP Category: A01:2021 — Broken Access Control
Severity: High (Horizontal privilege escalation)

Description

Insecure Direct Object Reference (IDOR) occurs when an application exposes internal object
identifiers and fails to verify whether the authenticated user is authorized to access the
requested resource. Attackers can manipulate object identifiers to access other users’ data.

Affected Functionality

Basket and cart management
User-specific resources accessed via URL parameters

Impact
An attacker could:

Access other users’ cart or order data



Modify or delete resources they do not own
Perform unauthorized actions on behalf of other users
Compromise data confidentiality and integrity

Root Cause

Missing server-side authorization checks
Direct reliance on client-supplied object identifiers
Trust in user-controlled request parameters

Recommendation

Enforce object-level authorization on every request

Validate that the authenticated user owns or is permitted to access the requested resource
Avoid exposing predictable object identifiers

Log and monitor unauthorized access attempts

Finding 3 — Cross-Site Scripting (XSS) (Medium—-High Risk)

OWASP Category: A07:2021 — Cross-Site Scripting
Severity: Medium—High (User compromise possible)

Description

Cross-Site Scripting (XSS) occurs when untrusted user input is rendered in application
responses without proper output encoding. This allows attackers to execute malicious
JavaScript in the context of a victim’s browser.

Affected Functionality

Search input fields
Comment or review features

Impact
An attacker could:

Hijack user sessions

Steal authentication tokens or credentials
Perform unauthorized actions as victims

Deliver phishing or malicious client-side payloads



Root Cause

Lack of context-aware output encoding
Rendering of untrusted input in HTML responses
Absence of a restrictive Content Security Policy (CSP)

Recommendation

Apply context-specific output encoding (HTML, JavaScript, URL)
Treat all user input as untrusted

Implement a strong Content Security Policy (CSP)

Use secure frameworks or templating engines with automatic escaping

Final Recommendations

Adopt secure coding practices aligned with OWASP guidelines
Perform regular security testing throughout development
Integrate security checks into CI/CD pipelines

Provide secure coding training for developers



